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We reexpress the Rashba and Dresselhaus interactions as non-Abelian spin-orbit gauges and provide a
perspective in understanding the persistent spin helix �B. A. Berneving et al., Phys. Rev. Lett. 97, 236601
�2006��. A spin-orbit interacting system can be transformed into a free-electron gas in the equal-strength
Rashba-Dresselhaus �001� linear model, the Dresselhaus �110� linear model, and a one-dimensional system. A
general tight-binding Hamiltonian for nonuniform spin-orbit interactions and hoppings along arbitrary direc-
tions, within the framework of finite-difference method, is obtained. As an application based on this Hamil-
tonian, a quantum square ring in contact with two ideal leads is found to exhibit four states: insulating,
spin-filtering, spin-flipping, and spin-keeping states.
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I. INTRODUCTION

The spin-orbit �SO� interaction interests scientists not
only for its wide applications in spintronics devices but also
for its profound physical significance. As frequently dis-
cussed, the Rashba spin-orbit �RSO� interaction and the
Dresselhaus spin-orbit �DSO� interaction exist in two-
dimensional electron gas �2DEG� which exists in semicon-
ductor heterostructures. The former, with strength adjustable
via the gate voltage,1,2 is due to the inversion asymmetry of
the structure,3 while the latter is due to lack of bulk inversion
symmetry.4,5 The SO coupling acts as an effective
momentum-dependent magnetic field6 and thus rotates the
spin. The precession angle acquired by an electron varies
according to the actual travel path of the electron. However,
in the two special cases of Rashba-Dresselhaus �001� �linear�
model of equal-strength RSO and DSO couplings and of the
Dresselhaus �110� �linear� model, this angle exhibits unique
behavior in that it is determined merely by the traveling dis-
tance along a specific spatial direction. In other words, the
spin is rotated by an identical angle for all paths with the
same projection to this direction. It turns out that the con-
figuration or the spatial distribution of the spin polarizations
is depicted by a helixlike pattern. Additionally, the pattern is
persistent under any spin-independent scattering; this persis-
tency implies that the spin lifetime is infinite and thus repre-
sents the so-called persistent spin helix7,8 �PSH�. The utiliza-
tion of this persistency was proposed by Schliemann et al.9

to achieve a spin-field-effect transistor with no ballistic con-
dition required.

Earlier study by Hatano et al.10 showed that SO interac-
tions can be regarded as non-Abelian SO or SU�2� gauges,
ASO= �Ax

SO,Ay
SO,0�, which impose spin-dependent phases on

the traveling electron. By neglecting the DSO coupling and
further adjusting the strengths of the RSO coupling and the
magnetic field, they achieved a perfect spin-filtering ring in
which one spin component gains destructive interference
while the other gains constructive one. Nonetheless, the
more realistic case of the coexistence of RSO and DSO in-
teractions has not yet been considered.

In this paper, we consider the RSO and DSO interacting
systems subject to an external magnetic field. We point out

that, even with the coexistence of RSO and DSO couplings,
the SO interactions and the magnetic field can all be re-
garded as gauges. To obtain a discrete �in space� tight-
binding �TB� model, we employ the finite-difference11 �FD�
method and introduce the SU�2� gauge with similar proce-
dure used for U�1� gauge. The conditions for performing this
analogy will be specified. We justify this SO-interacting TB
model by checking its consistency with a previously pro-
posed one.12 Utilizing these gauges, we show first that for a
continuous Hamiltonian, the predicted PSH7,8 can be under-
stood easily from the perspective of gauge transformation,
and that for a discrete TB Hamiltonian, a square ring func-
tions as a versatile device with four states: insulating, spin
filtering,10 spin flipping, and spin keeping.

This paper is organized as follows. The two sections, II
and III are divided into two parts which focus, respectively,
on the continuous and discrete cases. The Hamiltonian is
studied in the continuous case in Sec. II A and in the discrete
case in Sec. II B. Applications for both cases are given in
Secs. III A and III B. The Rashba-Dresselhaus �001� linear
Hamiltonian is considered throughout this paper, except in
Sec. III B where we address also the Dresselhaus �110� linear
model to demonstrate the PSH. We summarize in Sec. IV.

II. SPIN-ORBIT GAUGE IN THE RASHBA-DRESSELHAUS
[001] LINEAR HAMILTONIAN

In this section, we study the single-particle Rashba-
Dresselhaus �001� linear Hamiltonian. In Sec. II A, we intro-
duce the RSO and DSO interactions and show that they can
be expressed as gauges. To make this Hamiltonian numeri-
cally treatable, we discretize it in Sec. II B by considering a
TB model for the free-electron system subject to an external
magnetic field.

A. Continuous case

Spin-orbit interactions in 2DEG �in the x−y plane� are
commonly modeled by taking into account the lowest order
�linear� in momentum p. Consider a heterostructure grown
along the �001� direction. The corresponding single-particle
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Hamiltonian, together with the kinetic energy and the mag-
netic gauge AB, reads

H =
�2

2m
+

�

�
��y�x − �x�y� +

�

�
��x�x − �y�y� , �1�

where � and � denoting the RSO and DSO coupling
strengths. The magnetic field B is introduced by the kinetic
momentum �=p−eAB /c. Since Eq. �1� is quadratic in �,
one can always shift the operator � so that the linear term
disappears. Introducing the SO gauge,

ASO = �Ax,Ay� �
mc

e�
���y − ��x,− ��x + ��y� , �2�

we find that the SO interactions and the magnetic gauge AB

can be treated in the same manner. The Hamiltonian �Eq. �1��
thus becomes

H =
1

2m
�� −

e

c
ASO�2

− VIs =
1

2m
�p −

e

c
A�2

− VIs, �3�

with the constant potential V= �m /�2���2+�2�. The algebra
of Pauli matrices �i

2=1 and ��i ,� j	=2�ij with i , j� �x ,y ,z	
is used in arriving at Eq. �3�. The unified spin-dependent
gauge A=ABIs+ASO is not a scalar, and its components, in
general, do not commute,

�Ax,Ay� = 2i�mc

e�
�2

��2 − �2��z. �4�

The presence of the non-Abelian gauge field ASO, usually
referred to as the Yang-Mills field,13 makes the usual scalar
gauge formalism incapable and complicates the problem. Ac-
cording to Eq. �4�, there exists, however, an interesting ex-
ception when the RSO and the DSO couplings are of equal
strength, i.e., 
�
= 
�
. The commutator vanishes also for a
one-dimensional system, since only one component of the
gauge ASO is introduced via Eq. �3�. In Sec. III A, we show
that both of these cases can be transformed into the case of a
free-electron system. In particular, for 
�
= 
�
 in the Rashba-
Dresselhaus �001� model, this transformation is a gauge
transformation that simplifies the physical picture of the
PSH.7,8

B. Discrete case: Tight-binding model

The conventional TB model14 is based on real crystal
structure. Assuming that each electron orbital is localized
around its associated nucleus, all spatial interactions involv-
ing more than three nuclei centers can thus be neglected. In
other words, considering only the nearest-neighbor hopping
tm�m���, from site m� with spin �� to site m with spin �, will
be sufficient and will be the case exclusively used in the
present work. Within this approximation, the Hamiltonian
can be represented in the form

HTB = �
m�

um�cm�
† cm� + �

�m,m�


���

tm�,m���cm�
† cm���, �5�

with the on-site energy um� tunable by the gate voltage, and
the fermion creation �annihilation� operators being denoted
by cm� �cm���

† �, obeying �cm� ,cm���
† 	=1.

On the other hand, the finite-difference FD method11 ap-
proximates differentiations by discretizing variables. For ex-
ample, the differentiation px��x� in the momentum operator
px is replaced with −i���x+a−�x−a� /a�−i�d��x� /dx.
Clearly, this approximation is valid only when the wave
function ��x� varies slowly over one lattice constant a or
under the condition a	1. Physically, this is the case where
only electrons near the band bottom, with small p=�k, enter
our problem. Despite this restriction, the method is quite
general and powerful since it can transform any single-
particle Hamiltonian into a matrix form solvable by numeri-
cal methods. Even though the FD method is based on differ-
ent physical assumptions than the conventional TB model,
the single-particle Hamiltonian can always be expressed in
the form11 of Eq. �5�. In particular, it allows us to relate the
continuous Hamiltonian �Eq. �1�� to the discrete SO-
interacting TB model.

Consider the free-electron system,

Hfree =
�2

2m
. �6�

The TB Hamiltonian corresponding to Eq. �6� reads11

Hfree = �
m�

cm�
† cm�um�

free + �
�m,m�


���

tm�,m���
free cm�

† cm���. �7�

Each dimension contributes the quantity 2t0Is to the on-site
energy, and in a square lattice, we therefore have

um
free = 4t0Is, �8�

with um�
free= �� 
um

free 
�
, the hopping strength defined as t0

=�2 /2ma2, and the spin identity matrix denoted by Is. The
magnetic gauge AB is introduced as a phase factor in the
hopping matrix,

tm,m�
free = − t0 exp� ie

c�
AB · �m − m���Is, �9�

with tm�,m���
free = �� 
 tm,m�

free 
��
. We note that the phase acquired
by an electron hopping from one site to another over a dis-
tance a is proportional to aAB. If we treat the ASO as AB in
Eq. �9� and expand the SU�2� phase as

e�ie/c��Ax
SOae�ie/c��Ay

SOa � ei�ie/c���Ax
SO+Ay

SO�a

+ O�� ea

c�
�2

�Ax
SO,Ay

SO�� , �10�

with �Ax
SO,Ay

SO��Ax
SOAy

SO−Ay
SOAx

SO, we find that in the limit,
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e

c�
ASO · �m − m�� 	 1, �11�

the SO gauge ASO plays a similar role as AB due to their
equivalent algebra: exp��iea /c���Ax

B�SO���exp��iea /c��

�Ax

B�SO���=exp��iea /c���Ax
B�SO�+Ay

B�SO���. Accordingly, in
the FD approximation with lattice spacing small enough to
satisfy Eq. �11�, the replacements of

4t0 → 4t0 − V , �12�

in Eq. �8�, and

AB → AB + ASO, �13�

in Eq. �9�, yield the expression, in the TB form of our SO
Hamiltonian �Eq. �3��,

H = �
m�

um�cm�
† cm� + �

�m,m�


���

tm�,m���cm�
† cm���, �14�

but now with um= �4t0−V�Is and tm,m�=
−t0 exp��ie /c��A · �m−m��� which takes into account both
the background potential V and the SO gauge ASO.

To make a comparison with the TB Hamiltonian of Ref.
12 where a special case of the square lattice without any
applied magnetic field is considered, we let AB=0 and ex-
pand the hopping matrix up to the second order of the expo-
nent �e /c��ASO· �m−m��,

tm,m� � − t0�1 +
ie

c�
ASO · �m − m��

− � e

c�
ASO · �m − m���2�

= �− t0�1 + i
tR

t0
�y − i

tD

t0
�x� +

V

2
, for m = m� + aex

− t0�1 − i
tR

t0
�x + i

tD

t0
�y� +

V

2
, for m = m� + aey

� ,

�15�

where the RSO and DSO hoppings are, respectively, defined
by tR=� /2a and tD=� /2a. Moreover, in the limit of Eq.
�11�, we can approximate the operation −V�m as −V
��m+aei

+�m−aei
� /2 with i� �x ,y	 due to the slow variation of

the wave function �m���m+aei
+�m−aei

� /2. This approxima-
tion converts the on-site background potential −V into the
hopping −V /2 and thus cancels out the last term V /2 in Eq.
�15�. Finally, in Eq. �14�, we have um=4t0Is, tm,m�=−t0�1
+ i�tR / t0��y − i�tD / t0��x� for m=m�+aex, and tm,m�=−t0�1
− i�tR / t0��x+ i�tD / t0��y� for m=m�+aey. By further letting
tD=0, Eq. �14� reduces to the form adopted in Ref. 12. This
suggests that, in the FD approximation and the limit of Eq.
�11�, it is reasonable to treat the SO gauge as a magnetic one.

For the 2DEG made of InGaAs / InAlAs heterostructure
grown along �001� direction, the typical parameters1 are the
effective electron mass m�0.05me �me is the electron mass�,
the SO coupling strength �0.3 eV Å, and the lattice constant
a�3 nm. These quantities yield the desired small value

�e /c��ASO· �m−m���1.5
10−3 so that Eq. �11� indeed
holds. Moreover, if Eq. �11� is satisfied, then the SU�2�
gauge can be approximated as the U�1� gauge. Accordingly,
two general properties of the TB Hamiltonian �Eq. �14�� can
be noted. First, the sites m are not necessarily arranged on a
square lattice, i.e., one can apply Eq. �14� to the hopping
along an arbitrary direction. Second, for spatially dependent
�nonuniform� SO interactions15 �=��r� and �=��r�, the
hopping exponent ASO· �m−m�� can simply be replaced with
�m�

m ASO�r�� ·dr� and the formalism remains the same.

III. APPLICATIONS

In Sec. III A, we present the application of the continuous
case based on Eq. �3�, and in Sec. III B, we present the
application of the discrete case based on Eq. �14�. The first
application is a study of the PSH from the gauge transforma-
tion, and the second extends the previous work of Ref. 10 on
the quantum square ring.

A. Continuous case: Gauge transformation and persistent spin
helix

Consider the local transformation operator U�r�
=exp��ie /�c��cA

SO�r�� ·dr��. In general, U�r� depends on
the integration path c. Nevertheless, in the case of uniform
Rashba and Dresselhaus interactions, ASO is independent of
the position r= �x ,y�, leading to �
ASO=0 so that
�cA

SOdr�=ASO·r becomes path independent. This yields the
expression

U�r� = exp� ie

�c
�ASO · r�� , �16�

with the unitary property U�r�U†�r�= Is ensured by the Her-
mitian relation ASO†=ASO, which follows from the definition
�Eq. �2��. We notice that Eq. �3� differs from the free-electron
gas �with a background potential V�,

h =
�2

2m
− V , �17�

only by a gauge �e /c�ASO. This suggests to the transforma-
tion,

U�r��U†�r� = � +
ie

�c
�ASO · r,��

+
1

2
� ie

�c
�2

�ASO · r,�ASO · r,��	 + ¯ ,

�18�

with �ASO·r ,��= i�ASO. However, due to the nonvanishing
commutator �Ax

SO,Ay
SO��0, the higher order terms in Eq.

�18�, in general, do not vanish, leading to U�r�hU†�r��H.
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In the exceptional equal-strength case 
�
= 
�
, the opera-
tors Ax

SO and Ay
SO satisfy the scalar algebra Ax

SOAy
SO

=Ay
SOAx

SO, and hence we obtain U�r��U†�r�=�−e /cASO

and the gauge transformation,

U†�r�HU�r� = h . �19�

As a result, the free-electron gas h in Eq. �17� and the SO-
interacting electron gas H in Eq. �3� share the same eigenen-
ergies Ek. Their corresponding eigenfunctions, denoted by
�Ek

�r��s
free and �Ek

�r��s
SO, respectively, differ from each

other only by a phase factor defined by the 2
2 matrix
U�r�, namely, �Ek

�r��s
SO=U�r��Ek

�r��s
free. Moreover, any

wave function is constructed by a superposition of the eigen-
functions, so that for any given wave function ��r��s

free in h,
the corresponding wave function in H is U�r���r��s

free. Be-
low, we show that the physical description of the PSH in the
SO-interacting system can be easily understood by this cor-
respondence.

Consider first an injected electron in the system h, de-
scribed by �inj�r��inj= ��kCk�Ek

�r���inj, with the initial spin
state �inj and the weight factor Ck. Clearly, without any spin-
dependent mechanisms, this electron retains its spin state �inj
as it traverses the sample. We introduce now the factor ASO.
This corresponds to turning on U�r� so that the electron
wave function, in the SO-interacting system H, undergoes
the gauge transformation of U�r�,

U�r��inj�r��inj = �
k

Ck�Ek
�r�U�r��inj. �20�

Accordingly, the spin polarization of the electron varies spa-
tially according to U�r��inj.

Using Eqs. �16� and �2�, with �=�, we find that


U�r�
�=� = exp�− �
i2m

�2 ��1,−1�r�1,1��
= exp�− i

���1,−1�/2
�


PSH
+ � , �21�

where ��1,−1����x ,�y� · �1,−1� /�2 is actually the spin rota-
tion operator, with rotation axis along �1,−1� and the preces-
sion angle 
PSH

+ ��4�m /�2�r�1,1� depending on the distance
r�1,1��r · �1,1� /�2 along �1,1� �cf. Fig. 2�b� in Ref. 8�. Simi-
larly, for �=−�, we have


U�r�
�=−� = exp�− i
���1,1�/2

�

PSH

− � , �22�

corresponding to a rotation axis along �1,1� and a precession
angle 
PSH

− = �4�m /�2�r�−1,1� with r�−1,1��r · �−1,1� /�2.
The equal-strength case, �=� or �=−�, shown above is

precisely the PSH with precession length,

LP =
�2�

2m�
, �23�

for spin to rotate 
PSH
+ or 
PSH

− =2�. Obviously, the PSH is
robust against any spin-independent mechanisms for which
U†�r�Vp�r�U�r�=Vp�r� holds for any potential of the form
Vp�r�� Is. This property is satisfied also by the finite-size

confinement due to spin-independent boundaries. In particu-
lar, the presence of AB, which determines the actual form of
�Ek

�r�, clearly does not affect the PSH. This is reasonable
since AB contributes only a spin-independent phase to the
electron wave function due to the absence of the Zeeman
term and therefore does not vary the spin polarization. Inclu-
sion of the Zeeman term requires further generalization,
which is beyond the scope of the present discussion.

A similar calculation can also apply to the DSO �110�
linear model,

H�110� =
px

2 + py
2

2m
−

2�

�
px�z, �24�

with the gauge A�110�
SO = �Ax�110� ,Ay�110� ,0�

��2��z ,0 ,0�mc /e�. Due to �Ax�110� ,Ay�110��=0, we have
here the PSH described by

U�r��110� = exp�− i
��z/2

�

PSH� , �25�

with 
PSH=−4m�x /�2 �cf. Fig. 2�d� in Ref. 8�.
We further point out that a one-dimensional SO-

interacting system �with any values of � and �� is also ame-
nable to this transformation. For example, consider a one-
dimensional �along en direction� SO-interacting conductor.
Since the degrees of freedom in the orthogonal directions are
frozen, only �n�� ·en and An

SO�ASO·en are relevant to our
problem and appear in Eq. �3�. The system can now be de-
scribed by H1D= ��n− �e /c�An

SO�2 / �2m�−V1D, with a con-
stant potential V1D. Without encountering the noncommut-
ability �Eq. �4��, we arrive again, by a procedure similar to
those above, at the transformation U1D†�rn�H1DU1D�rn�
=h1D=�n

2 /2m−V1D, with U1D�rn�=exp��ie /�c�An
SO·rn� and

rn�r ·en.

B. Discrete case: Four states in the quantum square ring

Using the TB Hamiltonian of Eq. �14�, we investigate in
this section a square ring interferometer10 �see Fig. 1� under
the influence of a magnetic field and of the DSO and RSO

FIG. 1. �Color online� A square ring with corners at �0,0�, �l ,0�,
�l , l�, and �l , l�, in contact with two leads. A magnetic field B=Bez is
locally applied at the center of the ring. Electrons are injected from
the left lead and then transmitted to the right lead via path I and
path II. The background shading represents the helix precession
angle. From white to black, the electron precesses by the angle �.
The rotation axes are specified by the arrows at the centers of the
rings for �a� �=� and �b� �=−�.
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couplings. The transmission coefficients T���, with incoming
�outgoing� spin denoted by ����� depend on the interplay
among the phases due to the RSO and DSO interactions and
the external field. Depending on the values of the magnetic
field B, the Rashba coefficient �, and Dresselhaus coefficient
�, there appear “perfect” four states in this setup: insulating,
spin-filtering,10,16,17 spin-flipping, and spin-keeping states.
When electrons are injected into the system, the spin-
insulating ring blocks both up and down spin channels, the
spin-filtering ring blocks only one of the spin channels, the
spin-flipping ring flips the spins of the injected electrons, and
the spin-keeping ring keeps the injected spin configuration
unaltered. It is worth mentioning that these four states are
perfect meaning that they are valid for any range of the in-
jected energy E.

Consider a square ring �see Fig. 1� described by H in Eq.
�14�, with width l and corners at m= �0,0�, �l ,0�, �l , l�, and
�0, l�. In the center hollow region, we apply the magnetic
field B=Bez. The field penetrates the ring, but it is not ap-
plied to the ring itself. Thus, the Zeeman splitting due to the
magnetic field can be disregarded. Two ideal leads contact
the ring at the positions �0,0� and �l , l�. For brevity, and with-
out loss of generality, we choose the on-site energy in both
leads and the ring to be zero. The self-energy11 ��E�= �E
− i�4t0

2−E2��c�0,0�
† c�0,0�+c�l,l�

† c�l,l�� /2 is generated due to the

presence of the leads. The transmission coefficients are com-
puted by

T��� = ��l,l�;��

�4t0

2 − E2

E − H − ��E�

�0,0�;�
 , �26�

with the incoming �from left lead� spin � and outgoing �to
the right lead� spin �� states denoted as 
�0,0� ;�
 and

�l , l� ;��
, respectively. The interference between the
bottom-right path I��0,0�→ �l ,0�→ �l , l� and the left-top
path II��0,0�→ �0, l�→ �l , l� is determined by the phase cir-
cling the ring of the form Uphase=UII

† UI
= �U�l,l�←�0,l�U�0,l�←�0,0��†U�l,l�←�l,0�U�l,0�←�0,0�
=U�0,0�←�0,l�U�0,l�←�l,l�U�l,l�←�l,0�U�l,0�←�0,0� with Um�←m

�exp��ie /c��A · �m−m���, where A=ABIs+ASO accounts
for the magnetic gauge AB= �−By ,Bx ,0� /2 and the SO
gauge of Eq. �2�. Explicitly, in the square ring, we obtain the
2
2 matrix,

Uphase = ei�B
ei�ml/�2����x−��y�e−i�ml/�2����y−��x�


e−i�ml/�2����x−��y�ei�ml/�2����y−��x�, �27�

corresponding to the magnetic flux �B= �e /c��Bl2. Denote
the general spin-up state with the polar angle 
� �0,�� and
azimuthal angle �� �0,2�� as ↑�
,��, i.e.,

−4 −3 −2 −1 0 1 2 3
−4

−3

−2

−1

0

1

2

3

4

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1

×π

(b)(a)

α/κ

β/κ

−3 −2 −1 0 1 2 3 4
−4

−3

−2

−1

0

1

2

3

4

FIG. 2. �Color online� Spin-orbit phases in �a� �↑̃
SO

and �b� �↓̃
SO

as functions of � /� and � /� with ����2 /ml for the square ring
patterned in the Rashba-Dresselhaus �001� 2DEG.
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↑�
,�� =�e−i�/2 cos



2

ei�/2 sin



2
� . �28�

Strictly speaking, in the arbitrary spin-up ↑�
,�� and spin-
down ↓�
,�� axes, Uphase does not give us the meaning of
“phase,” since it is, in general, a nondiagonal matrix, while
in the diagonal axes with

D†UphaseD = � , �29�

defining the tilted up 
↑̃
 �down 
↓̃
� spin as 
↑̃
=D
↑�0,0�

�
↓̃
=D
↓�0,0�
�, the circled phase �↑̃�↓̃� acquired by 
↑̃
 �
↓̃
�
electron can be read off via the eigenvalues of Uphase,

� = �ei�↑̃ 0

0 ei�↓̃
� , �30�

with �↑̃�↓̃���B+�↑̃�↓̃�
SO

contributed by both magnetic �B and

SO �↑̃�↓̃�
SO

phases. Consider now a special case with vanishing

�, �B=� /2, and �↑̃�↓̃�
SO

= + �−�� /2. This corresponds to the

Rashba strength,10

�* =
�2

ml
sin−1�2−1/4� . �31�

There is, therefore, destructive interference ei�↑̃=ei�=−1 for


↑̃
 electrons and constructive interference ei�↓̃=ei0=1 for 
↓̃

electrons. The spin-filtering ring �filtering out 
↑̃
� is thus
achieved in this case.

Note that there is no absolute “up” and “down” directions
for tilted spins. For the two eigenvalues, �1 and �2, of Eq.
�27�, one can select �1 as the first eigenvalue �11
=exp�i�↑̃�=�1 and �2 as the second �22=exp�i�↓̃�=�2 to
construct the rotation matrix D, while it is also allowed to
select �2 as the first eigenvalue and �1 as the second, i.e.,
exp�i�↑̃�=�2 and exp�i�↓̃�=�1 which yields another D. This
selectivity does not cause any confusion, since the tilted-up

spin 
↑̃
 and tilted-down spin 
↓̃
 are also switched if one
swaps the eigenvalues. As a result, as long as the constructed
D is consistent with the definition �Eq. �29��, the phases �or

exp�i�↑̃� and exp�i�↓̃�� are uniquely determined for 
↑̃
 and


↓̃
. We now numerically analyze the SO phase �↑̃�↓̃�
SO

and the

transmission coefficients T��� in Eq. �26�.
In Figs. 2�a� and 2�b�, we plot the tilted-spin-up phase

�↑̃
SO

and tilted-spin-down phase �↓̃
SO

as functions of the

Rashba � /� and Dresselhaus � /� interaction strengths with
normalization factor ����2 /ml depending on the length l
of the square ring. Since Uphase��B→0� in Eq. �27� is a ro-
tation in the SU�2� group, we have det�Uphase��B→0��
=det �=1, yielding �↑̃

SO
=−�↓̃

SO
which is clearly seen in Fig.

2. Furthermore, under the replacement �� ,��→ �� ,��, i.e.,
swapping � and �, with selecting the same rotation matrix
D, the SO phases are antisymmetric �different by a sign�.
Nodes are also found in the phases �Fig. 2�. First, along 
�


= 
�
, Uphase��B→0, 
�
→ 
�
�= Is gives zero �↑̃�↓̃�
SO

. Second,

along the circles Rs=���2+�2� /�2=s, with s=0,1 ,2 ,¯,
�↑̃�↓̃�

SO
vanishes. These nodes can actually be obtained by a

direct analytical computation on the eigenvalues of Eq. �27�
with imposing the condition of positive real eigenvalues.

Figure 3 plots the transmission coefficients T���, with �,

��= �↑̃ , ↓̃	, as functions of the injection energy E. Obviously,
for any 
�
= 
�
 with �B= �2n+1�� and n� integer, the ring
is completely destructive for electron spins of any directions
due to �↑�
,��=�↓�
,��= �2n+1��. In Fig. 3�a�, we thus have
the insulating state. For the spin-filtering state in Fig. 3�b�,
we take the values �� ,�� /�*= �0,1� and �B= �4n+1�� /2

which contribute to the ↑̃ and ↓̃ spins, respectively, with the
constructive �↑̃=2n� and destructive �↓̃= �2n+1�� phases.
As a response to the antisymmetric property of the �↑̃�↓̃�

mentioned above, the indices ↑̃ and ↓̃ in the transmission
coefficients are swapped if we interchange � and �, i.e.,
choose the values �� ,�� /�*= �1,0� as used in Ref. 10.

Here, the destructive interference means that the outgoing
channel is blocked. So far, we have not utilized any relation
between the incoming and outgoing spin states. These two
states are correlated with each other by the spin precession,
for example, the PSH, which yields the spin-flipping ring in
Fig. 3�c� and spin-keeping ring in Fig. 3�d�. We now focus
on the case of 
�
= 
�
. Without loss of generality, assume
��0 for simplicity. Due to Uphase�
�
→ 
�
�� Is, the phases
are now merely determined by the magnetic gauge and be-
come spin independent, i.e., �B=�↑�
,��

=�↓�
,��
. As a result,

the interference and the precession are decoupled in the PSH
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FIG. 3. Transmission coefficients T↑�
,��↑�
,��
�black solid lines�,

T↓�
,��↑�
,��
�gray solid lines�, T↑�
,��↓�
,��

�black dashed lines�, and

T↓�
,��↓�
,��
�gray dashed lines� as functions of energy E. In �a� the

insulating state and �d� the spin-keeping state, the up spin ↑�
,�� is
defined by Eq. �28� for any 
� �0,�� and �� �0,2��. In �b� the
spin-filtering state, up spin is defined in the tilted axes mentioned in

Sec. III B, i.e., ↑�
,��� ↑̃, whereas in �c� the spin-flipping state, it is
defined in any directions lying in the x=y plane, i.e., ↑�
,��
�↑�
,�/4�.
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and are governed separately by the magnetic and the SO
gauges.

In one of the equal-strength case, namely, �=�, we have,
according to Eq. �21�, the PSH pattern shown in Fig. 1�a�.
The condition �2l=LP�2s+1� /2, with LP defined in Eq. �23�,
assumes the form

� = � =
�2s + 1���2

4�2lm
, �32�

and rotates any injected spin ↑�
,�/4� �or ↓�
,�/4�� along the x
=y plane by the angle 
PSH

+ =��2s+1�. For example, the
sketch in Fig. 1�a� is the case with 
PSH

+ =3�. As a result,
after passing through the ring, ↑�
,�/4� is flipped to ↓�
,�/4� �or
↓�
,�/4� to ↑�
,�/4��. This represents the spin-flipping ring. In-
deed, under the condition �32�, and with B=0, our numerical
result in Fig. 3�c� suggests the spin-flipping state by showing
vanishing T↑�
,�/4�↑�
,�/4�

and T↓�
,�/4�↓�
,�/4�
and nonvanishing

T↑�
,�/4�↓�
,�/4�
and T↓�
,�/4�↑�
,�/4�

.

In the other equal-strength case, �=−�, we have, accord-
ing to Eq. �22�, the PSH pattern shown in Fig. 1�b�. There-
fore, as long as the ring retains its square shape, injected spin
of arbitrary direction remains in its original configuration
due to the zero precession angle 
PSH

− =0. One thus arrives at
the spin-keeping ring in accord with Fig. 3�d� which predicts
such a state by showing vanishing T↑�
,��↓�
,��

and T↑�
,��↓�
,��
.

Note that although Figs. 3�c� and 3�d� are plotted for the
special case B=0, the features of spin flipping and spin keep-

ing are robust against magnetic field since they result from
precession rather than phase change.

IV. SUMMARY

In the limit of Eq. �11�, the approximation �Eq. �10�� sug-
gests that the SU�2� or SO phases can be treated as U�1�
phases. We justified the SO-interacting TB model, estab-
lished from this analogy, by comparison with one previously
published result given in Ref. 12. The PSH, initially obtained
from a global SU�2� transformation,7 is obtained here by
means of a local gauge transformation. As an application of
the geometry of the PSH pattern, we considered a square ring
in contact with two ideal leads. This setup is found to be a
versatile spintronics device performing four types of func-
tions in which spins are insulated, filtered, flipped, or kept �in
polarization�. The former two are due to phase change, while
the latter two are due to spin precession and newly proposed
here. The SO phases in the presence of both RSO and DSO
couplings are also analyzed. In particular, the SO phases are
antisymmetric under the exchange of these two SO cou-
plings. Our numerical results on transmission coefficients
conform with theoretical predictions on the PSH and thus
suggest a four state device.
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